dmitri.shuralyov.com/gpu/mtl/example/movingtriangle

This page is out of date. Refresh to see the latest.

Commit 85de2813 from 1 year ago.

main.go

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// +build darwin

// movingtriangle is an example Metal program that displays a moving triangle in a window.
// It opens a window and renders a triangle that follows the mouse cursor.
package main

import (
	"flag"
	"fmt"
	"log"
	"os"
	"runtime"
	"time"
	"unsafe"

	"dmitri.shuralyov.com/gpu/mtl"
	"dmitri.shuralyov.com/gpu/mtl/example/movingtriangle/internal/appkit"
	"dmitri.shuralyov.com/gpu/mtl/example/movingtriangle/internal/coreanim"
	"github.com/go-gl/glfw/v3.3/glfw"
	"golang.org/x/image/math/f32"
)

func 

init

() { runtime.LockOSThread() } func

main

() { flag.Usage = func() { fmt.Fprintln(os.Stderr, "Usage: movingtriangle") flag.PrintDefaults() } flag.Parse() err := run() if err != nil { log.Fatalln(err) } } func

run

() error { device, err := mtl.CreateSystemDefaultDevice() if err != nil { return err } fmt.Println("Metal device:", device.Name) err = glfw.Init() if err != nil { return err } defer glfw.Terminate() glfw.WindowHint(glfw.ClientAPI, glfw.NoAPI) window, err := glfw.CreateWindow(640, 480, "Metal Example", nil, nil) if err != nil { return err } defer window.Destroy() ml := coreanim.MakeMetalLayer() ml.SetDevice(device) ml.SetPixelFormat(mtl.PixelFormatBGRA8UNorm) ml.SetDrawableSize(window.GetFramebufferSize()) ml.SetMaximumDrawableCount(3) ml.SetDisplaySyncEnabled(true) cv := appkit.NewWindow(window.GetCocoaWindow()).ContentView() cv.SetLayer(ml) cv.SetWantsLayer(true) // Set callbacks. window.SetFramebufferSizeCallback(func(_ *glfw.Window, width, height int) { ml.SetDrawableSize(width, height) }) var windowSize = [2]int32{640, 480} window.SetSizeCallback(func(_ *glfw.Window, width, height int) { windowSize[0], windowSize[1] = int32(width), int32(height) }) var pos [2]float32 window.SetCursorPosCallback(func(_ *glfw.Window, x, y float64) { pos[0], pos[1] = float32(x), float32(y) }) // Create a render pipeline state. const source = `#include <metal_stdlib> using namespace metal; struct Vertex { float4 position [[position]]; float4 color; }; vertex Vertex VertexShader( uint vertexID [[vertex_id]], device Vertex * vertices [[buffer(0)]], constant int2 * windowSize [[buffer(1)]], constant float2 * pos [[buffer(2)]] ) { Vertex out = vertices[vertexID]; out.position.xy += *pos; float2 viewportSize = float2(*windowSize); out.position.xy = float2(-1 + out.position.x / (0.5 * viewportSize.x), 1 - out.position.y / (0.5 * viewportSize.y)); return out; } fragment float4 FragmentShader(Vertex in [[stage_in]]) { return in.color; } ` lib, err := device.MakeLibrary(source, mtl.CompileOptions{}) if err != nil { return err } vs, err := lib.MakeFunction("VertexShader") if err != nil { return err } fs, err := lib.MakeFunction("FragmentShader") if err != nil { return err } var rpld mtl.RenderPipelineDescriptor rpld.VertexFunction = vs rpld.FragmentFunction = fs rpld.ColorAttachments[0].PixelFormat = ml.PixelFormat() rps, err := device.MakeRenderPipelineState(rpld) if err != nil { return err } // Create a vertex buffer. type Vertex struct { Position f32.Vec4 Color f32.Vec4 } vertexData := [...]Vertex{ {f32.Vec4{0, 0, 0, 1}, f32.Vec4{1, 0, 0, 1}}, {f32.Vec4{300, 100, 0, 1}, f32.Vec4{0, 1, 0, 1}}, {f32.Vec4{0, 100, 0, 1}, f32.Vec4{0, 0, 1, 1}}, } vertexBuffer := device.MakeBuffer(unsafe.Pointer(&vertexData[0]), unsafe.Sizeof(vertexData), mtl.ResourceStorageModeManaged) cq := device.MakeCommandQueue() frame := startFPSCounter() for !window.ShouldClose() { glfw.PollEvents() // Create a drawable to render into. drawable, err := ml.NextDrawable() if err != nil { return err } cb := cq.MakeCommandBuffer() // Encode all render commands. var rpd mtl.RenderPassDescriptor rpd.ColorAttachments[0].LoadAction = mtl.LoadActionClear rpd.ColorAttachments[0].StoreAction = mtl.StoreActionStore rpd.ColorAttachments[0].ClearColor = mtl.ClearColor{Red: 0.35, Green: 0.65, Blue: 0.85, Alpha: 1} rpd.ColorAttachments[0].Texture = drawable.Texture() rce := cb.MakeRenderCommandEncoder(rpd) rce.SetRenderPipelineState(rps) rce.SetVertexBuffer(vertexBuffer, 0, 0) rce.SetVertexBytes(unsafe.Pointer(&windowSize[0]), unsafe.Sizeof(windowSize), 1) rce.SetVertexBytes(unsafe.Pointer(&pos[0]), unsafe.Sizeof(pos), 2) rce.DrawPrimitives(mtl.PrimitiveTypeTriangle, 0, 3) rce.EndEncoding() cb.PresentDrawable(drawable) cb.Commit() frame <- struct{}{} } return nil } func

startFPSCounter

() chan struct{} { frame := make(chan struct{}, 4) go func() { second := time.Tick(time.Second) frames := 0 for { select { case <-second: fmt.Println("fps:", frames) frames = 0 case <-frame: frames++ } } }() return frame }