Object Detection with Pixel Intensity Comparisons Organized in Decision

Trees

Nenad Markus', Miroslav Frljak', Igor S. Pandzi¢', Jorgen Ahlbergt, and Robert Forchheimer?

t University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
! Linképing University, Department of Electrical Engineering, SE-581 83 Linkoping, Sweden

g 2014

= Abstract

We describe a method for visual object detection based on

an ensemble of optimized decision trees organized in a cas-

cade of rejectors. The trees use pixel intensity compar-
r—=isons in their internal nodes and this makes them able to

process image regions very fast. Experimental analysis is
Q provided through a face detection problem. The obtained
(/) results are encouraging and demonstrate that the method
O has practical value. Additionally, we analyse its sensitiv-

ity to noise and show how to perform fast rotation invari-
L) ant object detection. Complete source code is provided at
'2 https://github.com/nenadmarkus/pico.
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1

Introduction

In computer vision, detection can be described as a task of
(Y) finding the positions and scales of all objects in an image
=1 that belong to a given appearance class. For example, these
S objects could be cars, pedestrians or human faces. Automatic
*== object detection has a broad range of applications. Some
>< include biometrics, driver assistance, visual surveillance and
smart human-machine interfaces. These applications create
a strong motivation for the development of fast and accurate
object detection methods.

Viola and Jones [20] have made object detection practically
feasible in real world applications. This is due to the fact
that systems based on their framework can process images
much faster than previous approaches while achieving similar
detection results. Still, some applications could benefit from
faster detectors, and this was the main motivation for our
research. We are interested in supporting a wide range of
PC and mobile devices with limited processing power. Thus,
to make our system practical in these applications, we are
ready to sacrifice detection accuracy at the expense of better
processing speeds and simplicity.

In this paper, we describe an object detection framework
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which is able to process images very fast while retaining com-
petitive accuracy. Basic ideas are described in Section 2. Ex-
perimental analysis is provided in Section 3. Section 4 sum-
marizes our findings and discusses future research directions.
We have noticed (Feb. 2014) that an almost identical
framework has been described by Liao et al. in a technical
report [11]. Here we acknowledge their work and state that
our research has been performed completely independently.

2 Method

Our approach is a modification of the standard Viola-Jones
object detection framework. The basic idea is to scan the
image with a cascade of binary classifiers at all reasonable
positions and scales. An image region is classified as an ob-
ject of interest if it successfully passes all the members of the
cascade. Each binary classifier consists of an ensemble of de-
cision trees with pixel intensity comparisons as binary tests
in their internal nodes. The learning process consists of a
greedy regression tree construction procedure and a boosting
algorithm. The details are given in the following subsections.

2.1 Decision tree for image based regression

To address the problem of image based regression, we use
an optimized binary decision tree with pixel intensity com-
parisons as binary tests in its internal nodes. This approach
was introduced by Amit and Geman in [1], and later success-
fully used by other researchers and engineers (for example,
see [16, 15, 13]). A pixel intensity comparison binary test on
image I is defined as

0, I(l;) <I(ly)
1, otherwise,

bintest(/;11,15) = { (1)

where I(1;) is the pixel intensity at location 1;. Locations 1
and ly are in normalized coordinates, i.e., both are from the
set [—1,41] x [-1,+1]. This means that the binary tests can
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easily be resized if needed. Each terminal node of the tree
contains a scalar that models the output.

The construction of the tree is supervised. Training data
is a set {(Ls,vs,ws) : s = 1,2,...,5} where v, is the ground
truth value associated with image I, and w; is its importance
factor (weight). For example, in the case of binary classi-
fication, the ground truths represent class labels: Positive
samples are annotated with +1 and negative samples with
—1. The weights w, enable us to assign different importance
value to each of these samples. This will prove important
later. The binary test in each internal node of the tree is se-
lected in a way to minimize the weighted mean squared error
obtained when the incoming training data is split by the test.
This is performed by minimizing the following quantity:

by >

(I,v,w)eCy (I,v,w)eCy

WMSE = w-(v—10) + w-(v—11)%, (2)

where Cy and C are clusters of training samples for which
the results of binary test on an associated image were 0 and
1, respectively. Scalars vy and ©; are weighted averages of
ground truths in Cy and Cq, respectively. As the set of all
pixel intensity comparisons is prohibitively large, we gener-
ate only a small subset during optimization of each internal
node by repeated sampling of two locations from a uniform
distribution on a square [—1,41] x [—1,+1]. The test that
achieves the smallest error according to equation 2 is selected.
The training data is recursively clustered in this fashion until
some termination condition is met. In our setup, we limit the
depth of our trees to reduce training time, runtime processing
speed and memory requirements. The output value associated
with each terminal node is obtained as the weighted average
of ground truths that arrived there during training.

If we limit the depth of the tree to D and we consider
B binary tests at each internal node, the training time is
O(D - B - S) for a training set containing S samples, i.e., it
is linear in all relevant parameters. This follows from the
observation that each training sample is tested with B pixel
intensity comparisons for each internal node it visits on its
path of length D from the root node to its terminal node. A
constructed tree needs O(2P) bytes for storage and its run-
time speed scales as O(D).

2.2 An ensemble of trees for binary classifi-
cation

A single decision tree can usually reach only moderate accu-
racy. On the other hand, an ensemble of trees can achieve
impressive results. We use the GentleBoost algorithm [1], a
modification of the better known AdaBoost, to generate a dis-
criminative ensemble by sequentially fitting a decision tree to
an appropriate least squares problem.

In order to generate an ensemble of K trees from a training
set {(Is,¢cs) : s =1,2,...,5}, the algorithm proceeds in the
following steps:

1. Initialize the weight ws for each
label ¢s € {—1,+1} as

1/P, c¢s=+1
Wy =
1/N, ¢s=-1
where P is the total number of positive samples and N
is the total number of negative samples.

image I; and its class

2. Fork=1,2,... K :

(a) Fit a decision tree T}, by weighted least squares of ¢
to I, with weights ws (as explained in section 2.1).

(b) Update weights:
ws = wg exp (—cs Tk (1)),

where Ty (Is) denotes the real-valued output of tree
Ty on image I;.

(¢) Renormalize weights so they sum to 1.
3. Output ensemble {T} : k=1,2,...,K}.

During runtime, the outputs of all trees in the ensemble
are summed together and the obtained value is thresholded
in order to obtain a class label. We can achieve different ratios
of true positives to false positives by varying the threshold.
This proves important in building an efficient detector, as
described in the next section.

2.3 Detection as image scanning with a cas-
cade of binary classifiers

Without any a priori knowledge, we have to systematically
scan the image with our binary classifier at all different po-
sitions and scales in order to find the objects of interest. As
this is computationally demanding, we follow the proposal of
Viola and Jones. The basic idea is to use multiple classifi-
cation stages with increasing complexity. Each stage detects
almost all objects of interest while rejecting a certain fraction
of non-objects. Thus, the majority of non-objects are rejected
by early stages, i.e., with little processing time spent.

In our case, each stage consists of an ensemble of trees.
Early stages have fewer trees than the later ones. The detec-
tion rate of each stage is regulated by adjusting the output
threshold of its ensemble. Each stage uses the soft output
(” confidence”) of the previous stage as additional information
to improve its discriminability. This is achieved by progres-
sively accumulating the outputs of all classification stages in
the cascade (similar to [21]).

2.4 Clustering raw detections

As the final detector is robust to small perturbations in po-
sition and scale, we expect multiple detections around each



object of interest. These overlapping detections are clustered
together in a post-processing step as follows.

We construct an undirected graph in which each vertex
corresponds to a raw detection. Two vertices are connected if
the overlap of their corresponding detections is greater than
30%:

D1 N Dy

—— >0.3.
D; U Dy

3)
Next, we use the depth-first search to find the connected com-
ponents in this graph. Raw detections within each component
are combined in a single detection by averaging the position
and scale parameters. This simple clustering procedure does
not require the number of clusters to be set in advance.

3 Face detection experiments

It is not obvious that the described framework can give pleas-
ing results in practice. Experimental analysis is provided
through the face detection problem. A thorough survey of
the field can be found in [23].

3.1 Training

For the purpose of training, we use the AFLW [9] dataset
and the one provided by Visage Technologies (http://www.
visagetechnologies.com/). Both consist of face images an-
notated with approximate locations of the eyes. These are
used to estimate the position and scale of each face. We ex-
tract around 20 000 frontal faces from these datasets and gen-
erate 15 positive training samples from each frontal face by
small random perturbations on scale and position. We have
observed in our preliminary experiments that this makes the
detector more robust to aliasing and noise. Overall, this re-
sults in around 300 000 positive samples. For learning of each
stage we extract 300000 negatives from a large set of images
that do not contain any faces by collecting the regions that
were not discarded by any of the previously learned stages.
The parameters of the learning process have to be set in
advance. In our experiments, we tune them to produce a de-
tector which is able to process images rapidly, as this is our
main goal. We fix the depth of each tree to 6 and use 20 clas-
sification stages. Each classification stage has a predefined
number of trees and detection rate. We consider 256 binary
tests during the optimization of each internal tree node. This
optimization process considerably improves the performance
of the cascade. For example, the first stage consists of a sin-
gle tree. Its parameterized receiver operator characteristic
(ROCQ) curve can be seen in Figure 1. This experiment also
implies that using randomized ferns [15] in this framework
leads to inferior processing speeds at runtime since ferns dis-
card less negatives for the same stage complexity and detec-
tion rate. Similar conclusions can be made for other stages
of the cascade. Some parameters and results of the learning
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Figure 1: The ROC curves of the first stage of the cascade for
different number of binary tests considered in the optimiza-
tion of each internal tree node, r. Circular marker represents
the point on which the stage operates at runtime.

process are reported in Table 1. The overall detection rate on
the training set is approximately 0.92 for the estimated false
positive rate of 10~7. Note that this apparently low detection
rate does not mean poor performance in practice since we
generated 15 randomized samples for each frontal face image
in the available datasets. Also, we use the scanning window
approach during runtime and expect multiple detections for
each encountered face.

The learning takes around 30 hours on a modern PC with
4 cores and 16GB of RAM. Most of the computation effort
goes to the sampling of negatives for learning of each new
classification stage. The learned cascade uses less than 200
kB of storage.

3.2 Analysis of accuracy and processing
speed

To put our system into perspective, we compare its detection
rate, false positive rate and processing speed to the tried-
and-true face detection implementations available in OpenCV
(http://opencv.org/, version 2.4.3). The first one is based
on Haar-like features (standard Viola-Jones framework, see
[12]) and the other on local binary patterns (LBPs, see [24]).
We would like to note that there are certain limitations to the
experiments that follow and we will not be able to provide
absolute measures how the methods compare. The idea is to
compare the implementation of our method to the baseline
provided by OpenCV.

To evaluate the detection rates, we use the GENKI-SZSL
[19] and CALTECH-FACES [2] datasets. The datasets con-
tain 3500 and 10 000 annotated faces, respectively. We report
the number of false positives on two large sets of images that
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num. trees 1 2 3 4 5 10 20 20 - 20 20
TPR [%] 97.5 | 98.0 | 98.5 | 99.0 | 99.5 | 99.7 | 99.9 | 99.9 99.9 | 99.9
FPR [%] 46.4 | 32.3 | 20.5 | 35.4 | 44.7 | 36.8 | 29.5 | 31.6 55.2 | 57.5

Table 1: Number of trees, true positive rate (TPR) and estimated false positive rate (FPR) for some stages.
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Figure 2: ROC curves for the GENKI-SZSL/NO-FACES-1

experiment.

do not contain any faces, NO-FACES-1 and NO-FACES-2.
All detectors start the scan with a 24 x 24 pixel window and
enlarge it by 20% until it exceeds the size of the image. For a
given scale, our system scans the image by shifting the window
by 10% of its size. The ROC curves can be seen in Figures
2 and 3 (circular markers represent the recommended oper-
ating points for OpenCV detectors in real-time applications,
as found in the documentation). We conclude that our sys-
tem slightly outperforms the other two detectors in terms of
accuracy. Of course, there is always the problem of dataset
bias [18] and unknown implementation details, i.e., we cannot
conclude which method is more accurate in general situations
based just on these limited experiments.

The V-J detector scans the NO-FACES-1 set in 602 seconds
and the LBP-based detector in 240 seconds. Our system needs
111 seconds for the task. The reported times are on a 2.5GHz
machine. We are interested in a more realistic setup: Scan
a 640 x 480 image starting with a 100 x 100 window that is
enlarged by 20% until it exceeds the size of the image. This
situation is commonly encountered in real-world applications
such as video conferencing or face tracker initialization. The
processing speeds are reported in Table 2. Bear in mind that
the implementation available in OpenCV is highly optimized
for PCs, i.e., it uses SIMD instructions, multi-core processing
and cache-optimized data structures. Its poor performance on
mobile devices can be explained by limited hardware support
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Figure 3:  ROC curves for the CALTECH-FACES/NO-
FACES-2 experiment.

for floating point operations on ARM architectures '. Our
implementation is written in pure C, without much time spent
on tweaking for processing speed. Also, all processing is done
in a single thread, i.e., uses a single CPU core.

We conjecture that it is possible to obtain even better re-
sults with more advanced cascade construction/optimization
techniques (for example, see[3, 17]). This kind of experiments
were beyond the scope of the present paper and we plan to
perform some of them in the future. Also, note that we can
increase the accuracy of our face detector at the cost of pro-
cessing speed by scanning the images more densely, for ex-
ample, by enlarging the scanning window by 10% instead of
20% when changing the detection scale. The choice of these
parameters depends on the targeted application.

3.3 Comparison with other methods

A common face detection accuracy benchmark is the FDDB
dataset [6]. It contains 5171 faces acquired under uncon-
strained conditions. Some annotated faces are in out-of-
plane rotated positions and frontal face detectors will not be
able to find them. As we do not have access to the source
code/binaries of the face detection systems considered to be
state-of-the-art, we rely on the results presented in the pa-

IWe are not the first to notice this problem with OpenCV. For ex-
ample, see http://www.computer-vision-software.com/blog/2009/04/
fixing-opencv/ (accessed on 29th of October, 2013).
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. Time [ms
Device CPU Our detector [ V-J (Open[CV]) | LBPs (OpenCV)
PC1 3.4GHz Core i7-2600 2.4 16.9 4.9
PC2 2.53GHz Core 2 Duo P8700 2.8 25.4 6.3
Phone 5 1.3GHz Apple AG 6.3 175.3 173
iPad 2 1GHz ARM Cortex-A9 12.1 347.6 103.5
iPhone 48 800MHz ARM Cortex-A9 14.7 430.3 129.2

Table 2: Average times required to find faces larger than 100 x 100 pixels in a 640 x 480 image.
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Figure 4: Discrete ROC curves for different face detection
systems on the FDDB dataset.

pers describing them. Some are summarized at http://
vis-www.cs.umass.edu/fddb/results.html and the other
were obtained by visual inspection of the available accu-
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Figure 5: Continuous ROC curves for different face detection
systems on the FDDB dataset.

racy plots. We use the protocol from [6] to compare our
system to the methods by Jun et al. [8], Li et al. [10], state-of-the-art face detection accuracy results on FDDB. The
Jain et al. [7] and a commercial system provided by Illux- system uses multiple detectors, each trained to detect faces in

Tech (http://illuxtech.com/). The discrete and continu-
ous ROC curves can be seen in figures 4 and 5. We can
see that [3, 10] and IluxTech outperform our system on this
dataset in terms of accuracy. Li et al. [10] and Jun et al.
[8] compare the processing speeds of their systems to the V-J
frontal face detector from OpenCV. All measurements were
performed on modern personal computers. It is difficult to
conjecture from the available data how the mentioned systems
compare to ours because we do not know which parameters
their authors used for the V-J detector in their experiments.
If we assume that they used the same parameters as we did,
this makes our system faster than Li et al. [10] by approxi-
mately 4.5 times, and at the same speed as Jun et al. [3].
Some of object detection research focuses on building ever
more accurate systems, even at the expense of processing
speed (for example, deformable part-based models with gra-
dient orientation histogram features, see [25, 14]). As far
as we know, the system presented by Yan et al. [22] obtains

a predefined range of out-of-plane rotations. Thus, we did not
include these results in figures 4 and 5. The authors report
a processing speed of around 20 frames per second for frontal
face detection in 640 x 480 images on a modern personal com-
puter. This suggests that their system would not achieve ac-
ceptable performance on mobile devices and other hardware
with limited processing power. More in depth comparisons
are not possible since we do not have access to the imple-
mentation of their method. Also, we conjecture that neural
network-based object detection systems will obtain even bet-
ter results in the future as neural networks started to outper-
form other machine learning methods on common benchmarks
[5]. However, neural networks are usually slow at runtime as
they require a lot of floating point computations to produce
their output, which is particularly problematic on mobile de-
vices. To conclude, our opinion is that similar systems are not
suitable for the same kind of applications as the face detector
described in this paper.
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Figure 6: Detection rate on the GENKI-SZSL dataset for
different noise levels.

3.4 Sensitivity to noise

It is reasonable to assume that our system performs poor
in the presence of high noise levels due to simplicity of the
used binary tests. On the other hand, the features used by
OpenCV detectors should be robust in these circumstances as
they are based on region averaging, which corresponds to low-
pass filtering. We use the additive (uncorrelated) Gaussian
noise model to quantitatively evaluate these effects: A sample
from a Gaussian distribution with zero mean and standard
deviation o is added to the intensity of each image pixel. An
experiment on the GENKI-SZSL dataset is reported in Figure
6. We see that the detection rate of our system degrades
significantly as the noise intensity increases. These adverse
effects can be reduced by applying a low-pass filter prior to
detection. We have not found this to be necessary as the noise
levels in this experiment are uncommon for modern cameras,
even on mobile devices. The images in the GENKI-SZSL
dataset are already noisy and contain compression artefacts,
i.e., they are representative of the ones encountered in real-
world face detection applications.

Note that the presented experiment indicates that other
systems based on similar features could be sensitive to high
noise levels as well. An example of such a commercial system
is the Microsoft Kinect human pose recognizer, described in

[16].

3.5 Detecting rotated faces

In some applications we are interested in object detection un-
der general planar rotations. A simple solution is to scan the
image at multiple orientations. In our case, this can be per-
formed without image resampling as pixel intensity compari-
son binary tests can be easily rotated for a given angle (in our
implementation, we use precomputed look-up tables as this
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Figure 7: ROC curves for different number of considered face
orientations, n, during the scan of each image.

Device Time [ms]

Y m=6]n=8]n=10n=12
PCL || 158 | 206 | 258 | 31.25
PC2 | 21.6 | 268 | 345 | 429

Table 3: Average times required to process a 640 x 480 pixel
image at n orientations, attempting to find faces larger than
100 x 100 pixels at all possible planar rotations.

proved faster than evaluating trigonometric functions at run-
time). It is not immediately clear if this leads to acceptable
performance since it could result in poor processing speeds
and/or large number of false positives. We use the previously
learned face detector and provide experimental analysis.

To investigate the detection accuracy, we rotate each im-
age found in the GENKI-SZSL dataset for a random angle
sampled uniformly from the [0,27) interval. We report false
positives on the NO-FACES-1 set. Results can be seen in Fig-
ure 7. By comparing the ROC curves to the ones in Figure 2
we can see that the accuracy of the approach is comparable
to the OpenCV’s LBP-based frontal face detector. Process-
ing speeds can be seen in Table 3. These results demonstrate
that our system can perform rotation invariant face detection
with reasonable accuracy in real-time using a single core of a
modern personal computer.

3.6 Qualitative results

Some qualitative results obtained by our system can be seen
in Figure 8. A video demonstrating rotation invariant face de-
tection is available at http://youtu.be/11Xfm-PZz0Q. Fur-
thermore, for readers who wish to test the method them-
selves, demo applications can be downloaded from http:
//public.tel.fer.hr/odet/. Complete source code is pro-
vided at https://github.com/nenadmarkus/pico.
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Figure 8: Some results obtained by our system on real-world images.



4 Conclusion

In this paper we have shown that an object detection sys-
tem based on pixel intensity comparisons organized in deci-
sion trees can achieve competitive results at high processing
speed. This is especially evident on devices with limited hard-
ware support for floating point operations. This could prove
important in the embedded system and mobile device indus-
tries because it can reduce hardware workload and prolong
battery life.
Further advantages of our method are:

e The method does not require the computation of inte-
gral images, image pyramid, HOG pyramid or any other
similar data structure.

e All binary tests in internal nodes of the trees are based on
the same feature type. For comparison, Viola and Jones
used 5 different types of Haar-like features to achieve
their results.

e There is no need for image preprocessing prior to detec-
tion (such as contrast normalization, resizing, Gaussian
smoothing or gamma correction).

e The method can easily be modified for fast detection of
in-plane rotated objects.
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