
Table of Contents
Chapter 1: Getting Started with Go for Data Structures and Algorithms 1

Technical Requirements 1
Arrays 2
Slices 3
Two Dimensional Slices 6
Maps 11
Database Operations 12

Variadic Functions 16
CRUD Web Forms 21

Defer and Panic 26
Summary 35
Q&A 36
Reference 36

Index 37

1
Getting Started with Go for

Data Structures and Algorithms
Slices are similar to arrays except that they have unusual properties. make function is used
to create a slice of specific type and with capacity. len and cap functions of slice return
length and capacity of slices respectively. Copy and append functions are used to increase
the capacity and contents of the slice. Slice operations such as enlarging a slice using
append and copy methods, assigning parts of a slice, appending a slice, and appending a
part of a slice are presented with code samples.

Database operations and CRUD web forms are the scenarios in which Go data structures
and algorithms are demonstrated.

In this chapter, we will discuss the following Go language specific data structures:

 Arrays
Slices
Two dimensional slices
Maps

Technical Requirements
Install Go version go1.10 from the link on golang.org depending on your os version.

The github url for the code in chapter 2 will be at Hands-On Data Structures and
Algorithms with Go, published by Packt

In this chapter, database operations require “github.com/go-sql-driver/mysql”. In addition
to this, MySQL (4.1+) needs to be installed from Dev Mysql site.

Run commands are shown below:

https://golang.org/doc/install
http://golang.org
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Go/tree/master/ch2
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Go/tree/master/ch2
https://dev.mysql.com/downloads/mysql/

Getting Started with Go for Data Structures and Algorithms Chapter 1

[2]

go get -u github.com/go-sql-driver/mysql

Arrays
Arrays are the most famous data structures in different programming languages. Different
data types can be handled as elements in Arrays such as int, float32, double, and others.
The following code snippet shows the initialisation of an array:

arrays.go

var arr = [5]int {1,2,4,5,6}

An array’s size can be found with the len() function. A for loop is used for accessing all the
elements in an array as shown below:

var i int
for i=0; i< len(arr); i++ {
fmt.Println("printing elements ",arr[i]
}

In the next code snippet, the Range keyword is explained in detail. The Range keyword
can be used to access index and value for each element:

var value int
for i, value = range arr{
fmt.Println(" range ",value)
}

_ blank identifier is used if index is ignored. The code exhibit shows how _blank identifier
can be used:

for _, value = range arr{
fmt.Println("blank range",value)
}

Run the following commands:

go run arrays.go

The screenshot of the output is attached below:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[3]

Go arrays are not dynamic but fixed in size. To add more elements than the size, a bigger
array needs to be created and all the elements of the old one needs to be copied. Array is
passed as a value through functions by copying the array. Passing a big array to a function
might be a performance issue.

Slices
A Go Slice can be appended with elements after the capacity has reached its size. The len()
function gives the current length of the slice, and the capacity of the slice can be obtained
using the cap() function.

Slices are dynamic and can double the current capacity in order to add more elements. The
code sample below shows the basic slice creation and appending a slice.

basic_slice.go

var slice = []int{1,3,5,6}
slice = append(slice, 8)
fmt.Println(“Capacity”, cap(slice))

Getting Started with Go for Data Structures and Algorithms Chapter 1

[4]

fmt.Println(“Length”, len(slice))

Run the following commands to execute the above code exhibit:

go run basic_slice.go

The screenshot of the output is attached below:

Slices are passed by reference to functions. Big slices can be passed to the functions without
impacting the performance. Passing a slice as a reference to a function is demonstrated in
the code below:

slices.go

//twiceValue method given slice of int type

Getting Started with Go for Data Structures and Algorithms Chapter 1

[5]

func twiceValue(slice []int) {
 var i int
 var value int
for i, value = range slice {
 slice[i] = 2*value
 }
 }
// main method
func main() {
 var slice = []int{1,3,5,6}
 twiceValue(slice)
 var i int
 for i=0; i< len(slice); i++ {
 fmt.Println(“new slice value”, slice[i])
}
}

Run the following commands:

go run slices.go

The screenshot of the output is attached below:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[6]

Two Dimensional Slices
Two dimensional slices are descriptors of a two dimensional array. This is a contiguous
section of an array which is stored away from the slice itself. They hold references to an
underlying array. A two dimensional slice will be an array of arrays, while the capacity of a
slice can be increased by creating a new slice and copying the contents of the initial slice
into the new one. This is also referred to as a slice of slices. Below is an example of two
dimensional arrays. 2D array is created and the array elements are initialised with values.

twodarray.go is the code exhibit presented in the code section as follows:

//main package has examples shown
// in Go Data Structures and algorithms book

Getting Started with Go for Data Structures and Algorithms Chapter 1

[7]

package main
// importing fmt package
import (
 "fmt"
)
// main method
func main() {
 var TwoDArray [8][8]int
 TwoDArray[3][6] = 18
 TwoDArray[7][4] = 3
 fmt.Println(TwoDArray)
}

Run the following commands:

go run twodarray.go

The screenshot of the output is attached below:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[8]

For dynamic allocation, we use slice of slices. Slice of slices is explained below as two
dimensional slices in the code exhibit - twodslices.go

// in Go Data Structures and algorithms book
package main
// importing fmt package
import (
 "fmt"
)
// main method
func main() {
 var rows int
 var cols int
 rows = 7
 cols = 9

Getting Started with Go for Data Structures and Algorithms Chapter 1

[9]

 var twodslices = make([][]int, rows)
 var i int
 for i = range twodslices {
 twodslices[i] = make([]int,cols)
 }
 fmt.Println(twodslices)
}

Run the following commands:

go run twodslices.go

The screenshot of the output is attached below:

 The "append" method on slice is used to append new elements in the slice. If the slice
capacity has reached the size of the underlying array, then append increases the size by
creating a new underlying array and adding the new element. slic1 is a sub slice of arr
starting from 0 to 3 (excluded), while slic2 is a sub slice of arr starting from 1 (inclusive) to 5
(excluded). In the snippet below, the append method calls on slic2 in order to add a new
'12' element:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[10]

append_slice.go

var arr = [] int{5,6,7,8,9}
var slic1 = arr[: 3]
fmt.Println("slice1",slic1)
var slic2 = arr[1:5]
fmt.Println("slice2",slic2)
var slic3 = append(slic2, 12)
fmt.Println("slice3",slic3)

Run the following commands:

go run append_slice.go

The screenshot of the output is attached below:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[11]

Maps
Maps are used to keep track of keys which are types such as integers, strings, float, double,
pointers, interfaces, structs and arrays. The value can be of different types. In the example
below, languages of map type with a key integer and value string is created:

maps.go

var languages = map[int]string {
 3: “English”,
 4: “French”,
 5: “Spanish”
}

Maps can be created using the "make" method, specifying the key type and value type.
Products of map type with key integer and value string are shown below in the code
snippet:

var products = make(map[int]string)
products[1] = “chair”
products[2] = “table”

A for loop is used for iterating through the map. The languages map is iterated below:

var i int
var value string
for i, value = range languages {
 fmt.Println("language",i, “:",value)
}
fmt.Println("product with key 2",products[2])

Retrieving value and deleting slice operations are shown below using the products map:

fmt.Println(products[2])
delete(products,”chair”)
fmt.Println("products",products)

Run the following commands:

go run maps.go

The screenshot of the output is attached below:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[12]

Database Operations
GetCustomer method retrieves the Customer data from the database. To start with,
the Create Database operation is shown in the example below. Customer is the table with
CustomerId, CustomerName and SSN attributes. The GetConnection method returns the
database connection, which is used to query the database. The query then returns the rows
from the database table. In the code exhibit below, database operations are explained in
detail:

database_operations.go

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book

Getting Started with Go for Data Structures and Algorithms Chapter 1

[13]

package main

// importing fmt,database/sql, net/http, text/template package
import (
 "fmt"
 "database/sql"
 _ "github.com/go-sql-driver/mysql"
)

// Customer Class
type Customer struct {
 CustomerId int
 CustomerName string
 SSN string
}
// GetConnection method which returns sql.DB
func GetConnection() (database *sql.DB) {
 databaseDriver := "mysql"
 databaseUser := "newuser"
 databasePass := "newuser"
 databaseName := "crm"
 database, error := sql.Open(databaseDriver,
databaseUser+":"+databasePass+"@/"+databaseName)
 if error != nil {
 panic(error.Error())
 }
 return database
}
// GetCustomers method returns Customer Array
func GetCustomers() []Customer {
 var database *sql.DB
 database = GetConnection()

 var error error
 var rows *sql.Rows
 rows, error = database.Query("SELECT * FROM Customer ORDER BY
Customerid DESC")
 if error != nil {
 panic(error.Error())
 }
 var customer Customer
 customer = Customer{}

 var customers []Customer
 customers= []Customer{}
 for rows.Next() {
 var customerId int
 var customerName string

Getting Started with Go for Data Structures and Algorithms Chapter 1

[14]

 var ssn string
 error = rows.Scan(&customerId, &customerName, &ssn)
 if error != nil {
 panic(error.Error())
 }
 customer.CustomerId = customerId
 customer.CustomerName = customerName
 customer.SSN = ssn
 customers = append(customers, customer)
 }

 defer database.Close()

 return customers
}

//main method
func main() {

 var customers []Customer
 customers = GetCustomers()
 fmt.Println("Customers",customers)

}

Run the following commands:

go run database_operations.go

The screenshot of the output is attached below:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[15]

The Insert operation is shown below. The InsertCustomer method takes the Customer
parameter and creates a prepared statement for the Insert statement. The statement is used
to execute the insertion of customer rows into the table, as shown in the snippet below:

// InsertCustomer method with parameter customer
func InsertCustomer(customer Customer) {
 var database *sql.DB
 database= GetConnection()

 var error error
 var insert *sql.Stmt
 insert,error = database.Prepare("INSERT INTO
CUSTOMER(CustomerName,SSN) VALUES(?,?)")
 if error != nil {
 panic(error.Error())
 }
 insert.Exec(customer.CustomerName,customer.SSN)

 defer database.Close()

Getting Started with Go for Data Structures and Algorithms Chapter 1

[16]

}

Variadic Functions
Variadic functions can be invoked with a variable number of parameters. fmt.Println is a
common variadic function as shown below:

//main method
func main() {
 var customers []Customer
 customers = GetCustomers()
 fmt.Println("Before Insert",customers)
 var customer Customer
 customer.CustomerName = "Arnie Smith"
 customer.SSN = "2386343"
 InsertCustomer(customer)
 customers = GetCustomers()
 fmt.Println("After Insert",customers)
 }

Run the following commands:

go run database_operations.go

The screenshot of the output is attached below:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[17]

The update operation is shown below. UpdateCustomer method takes the parameter
Customer and creates a prepared statement for the Update statement. The statement is used
to update a customer row in the table:

// Update Customer method with parameter customer
func UpdateCustomer(customer Customer) {
 var database *sql.DB
 database= GetConnection()
 var error error
 var update *sql.Stmt
 update,error = database.Prepare("UPDATE CUSTOMER SET CustomerName=?,
SSN=? WHERE CustomerId=?")
 if error != nil {
 panic(error.Error())
 }
 update.Exec(customer.CustomerName,customer.SSN,customer.CustomerId)

Getting Started with Go for Data Structures and Algorithms Chapter 1

[18]

defer database.Close()
}
// main method
func main() {
 var customers []Customer
 customers = GetCustomers()
 fmt.Println("Before Update",customers)
 var customer Customer
 customer.CustomerName = "George Thompson"
 customer.SSN = "23233432"
 customer.CustomerId = 5
 UpdateCustomer(customer)
 customers = GetCustomers()
 fmt.Println("After Update",customers)
}

Run the following commands:

go run database_operations.go

The screenshot of the output is attached below:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[19]

The delete operation is shown below. The DeleteCustomer method takes the
Customer parameter and creates a prepared statement for the Delete statement. The
statement is used to execute the deletion of a customer row in the table:

// Delete Customer method with parameter customer
func deleteCustomer(customer Customer) {
 var database *sql.DB
 database= GetConnection()
 var error error
 var delete *sql.Stmt
 delete,error = database.Prepare("DELETE FROM Customer WHERE
Customerid=?")
 if error != nil {
 panic(error.Error())
 }

Getting Started with Go for Data Structures and Algorithms Chapter 1

[20]

 delete.Exec(customer.CustomerId)
 defer database.Close()
}
// main method
func main() {
 var customers []Customer
 customers = GetCustomers()
 fmt.Println("Before Delete",customers)
 var customer Customer
 customer.CustomerName = "George Thompson"
 customer.SSN = "23233432"
 customer.CustomerId = 5
 deleteCustomer(customer)
 customers = GetCustomers()
 fmt.Println("After Delete",customers)
}

Run the following commands:

go run database_operations.go

The screenshot of the output is attached below:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[21]

CRUD Web Forms
To start a basic html page with GO net/http package, the webforms example is shown
below. This has a welcome greeting in main.html

webforms.go

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt, database/sql, net/http, text/template package
import (
 "net/http"

Getting Started with Go for Data Structures and Algorithms Chapter 1

[22]

 "text/template"
 "log")
// Home method renders the main.html
func Home(writer http.ResponseWriter, reader *http.Request) {
 var template_html *template.Template
 template_html = template.Must(template.ParseFiles("main.html"))
 template_html.Execute(writer,nil)
}
// main method
func main() {
 log.Println("Server started on: http://localhost:8000")
 http.HandleFunc("/", Home)
 http.ListenAndServe(":8000", nil)
}

main.html

<html>
<body>
<p> Welcome to Web Forms</p>
</body>
</html>

Run the following commands:

go run webforms.go

The screenshot of the output is attached below:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[23]

The web browser output will look something like this:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[24]

The CRM application is built with web forms as an example in order to demonstrate
CRUD operations. We can use database operations built in the previous section. In the code
sample below, crm database operations are presented. CRM Database operations consists of
CRUD methods such as Create, Read , Update and Delete Customer operations.
 GetConnection method retrieves the database connection for performing the database
operations.

crm_database_operations.go

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main
// importing fmt,database/sql, net/http, text/template package
import (
 "database/sql"
 _ "github.com/go-sql-driver/mysql"
)
// Customer Class
type Customer struct {

Getting Started with Go for Data Structures and Algorithms Chapter 1

[25]

 CustomerId int
 CustomerName string
 SSN string
}
// GetConnection method which returns sql.DB
func GetConnection() (database *sql.DB) {
 databaseDriver := "mysql"
 databaseUser := "newuser"
 databasePass := "newuser"
 databaseName := “crm"
 database, error := sql.Open(databaseDriver,
databaseUser+”:"+databasePass+"@/"+databaseName)
 if error != nil {
 panic(error.Error())
 }
 return database
}

GetCustomerById method takes customerId parameter to look up in the database the
customer. The method returns the customer object.

//GetCustomerById with parameter customerId returns Customer
func GetCustomerById(customerId int) Customer {
 var database *sql.DB
 database = GetConnection()
 var error error
 var rows *sql.Rows
 rows, error = database.Query("SELECT * FROM Customer WHERE
CustomerId=?",customerId)
 if error != nil {
 panic(error.Error())
 }
 var customer Customer
 customer = Customer{}
 for rows.Next() {
 var customerId int
 var customerName string
 var SSN string
 error = rows.Scan(&customerId, &customerName, &SSN)
 if error != nil {
 panic(error.Error())
 }
 customer.CustomerId = customerId
 customer.CustomerName = customerName
 customer.SSN = SSN
 }

Getting Started with Go for Data Structures and Algorithms Chapter 1

[26]

Defer and Panic
The defer statement defers the execution of the function until the surrounding function
returns. Panic function stops the current flow and control. Deferred Functions are
executed normally after the panic call. In the code below, the Defer call gets executed even
when the panic call is invoked.

 defer database.Close()
 return customer
}
// GetCustomers method returns Customer Array
func GetCustomers() []Customer {
 var database *sql.DB
 database = GetConnection()
 var error error
 var rows *sql.Rows
 rows, error = database.Query("SELECT * FROM Customer ORDER BY
Customerid DESC")
 if error != nil {
 panic(error.Error())
 }
 var customer Customer
 customer = Customer{}
 var customers []Customer
 customers= []Customer{}
 for rows.Next() {
 var customerId int
 var customerName string
 var ssn string
 error = rows.Scan(&customerId, &customerName, &ssn)
 if error != nil {
 panic(error.Error())
 }
 customer.CustomerId = customerId
 customer.CustomerName = customerName
 customer.SSN = ssn
 customers = append(customers, customer)
 }
 defer database.Close()
 return customers
}

 InsertCustomer method takes customer as a parameter to execute the SQL statement for
inserting into customer table.

// InsertCustomer method with parameter customer
func InsertCustomer(customer Customer) {

Getting Started with Go for Data Structures and Algorithms Chapter 1

[27]

 var database *sql.DB
 database= GetConnection()
 var error error
 var insert *sql.Stmt
 insert,error = database.Prepare("INSERT INTO
CUSTOMER(CustomerName,SSN) VALUES(?,?)")
 if error != nil {
 panic(error.Error())
 }
 insert.Exec(customer.CustomerName,customer.SSN)
 defer database.Close()
}

UpdateCustomer method prepares the update statement by passing the customer name
and SSN from customer object.

// Update Customer method with parameter customer
func UpdateCustomer(customer Customer) {
 var database *sql.DB
 database= GetConnection()
 var error error
 var update *sql.Stmt
 update,error = database.Prepare("UPDATE CUSTOMER SET CustomerName=?,
SSN=? WHERE CustomerId=?")
 if error != nil {
 panic(error.Error())
 }
update.Exec(customer.CustomerName,customer.SSN,customer.CustomerId)
 defer database.Close()
}

DeleteCustomer method deletes the customer passed by executing the delete statement.

// Delete Customer method with parameter customer
func DeleteCustomer(customer Customer) {
 var database *sql.DB
 database= GetConnection()
 var error error
 var delete *sql.Stmt
 delete,error = database.Prepare("DELETE FROM Customer WHERE
Customerid=?")
 if error != nil {
 panic(error.Error())
 }
 delete.Exec(customer.CustomerId)
 defer database.Close()
}

Getting Started with Go for Data Structures and Algorithms Chapter 1

[28]

The CRM web application is shown below with various web paths handled. CRM
application code is shown in the code sample below. Home function executes the Home
template with parameters writer and customers array.

crm_app.go

//main package has examples shown
// in Hands-On Data Structures and algorithms with Go book
package main

// importing fmt,database/sql, net/http, text/template package
import (
 "fmt"
 "net/http"
 "text/template"
 "log"
)

var template_html = template.Must(template.ParseGlob("templates/*"))

// Home - execute Template
func Home(writer http.ResponseWriter, request *http.Request) {
 var customers []Customer
 customers = GetCustomers()
 log.Println(customers)
 template_html.ExecuteTemplate(writer,"Home",customers)

}

Create function takes writer and request parameters to render Create Template.

// Create - execute Template
func Create(writer http.ResponseWriter, request *http.Request) {

 template_html.ExecuteTemplate(writer,"Create",nil)

}

Insert function invokes GetCustomers method to get an array of customers and renders
Home template with writer and customers array as parameters by invoking
ExecuteTemplate method.

// Insert - execute template
func Insert(writer http.ResponseWriter, request *http.Request) {

Getting Started with Go for Data Structures and Algorithms Chapter 1

[29]

 var customer Customer
 customer.CustomerName = request.FormValue("customername")
 customer.SSN = request.FormValue("ssn")
 InsertCustomer(customer)
 var customers []Customer
 customers = GetCustomers()
 template_html.ExecuteTemplate(writer,"Home",customers)

}

Alter function renders Home template by invoking ExecuteTemplate method with writer
and customers array as parameters.

// Alter - execute template
func Alter(writer http.ResponseWriter, request *http.Request) {

 var customer Customer
 var customerId int
 var customerIdStr string
 customerIdStr = request.FormValue("id")
 fmt.Sscanf(customerIdStr, "%d", &customerId)
 customer.CustomerId = customerId
 customer.CustomerName = request.FormValue("customername")
 customer.SSN = request.FormValue("ssn")
 UpdateCustomer(customer)
 var customers []Customer
 customers = GetCustomers()
 template_html.ExecuteTemplate(writer,"Home",customers)

}

Update function invokes the ExecuteTemplate method with writer and customer lookedup
by Id. ExecuteTemplate method renders Update Template.

// Update - execute template
func Update(writer http.ResponseWriter, request *http.Request) {

 var customerId int
 var customerIdStr string
 customerIdStr = request.FormValue("id")
 fmt.Sscanf(customerIdStr, "%d", &customerId)
 var customer Customer
 customer = GetCustomerById(customerId)

 template_html.ExecuteTemplate(writer,"Update",customer)

}

Getting Started with Go for Data Structures and Algorithms Chapter 1

[30]

Delete method renders the Home template after deleting the customer found by
GetCustomerById method. View method renders the View template after finding the
customer by invoking GetCustomerById metho

// Delete - execute Template
func Delete(writer http.ResponseWriter, request *http.Request) {
 var customerId int
 var customerIdStr string
 customerIdStr = request.FormValue("id")
 fmt.Sscanf(customerIdStr, "%d", &customerId)
 var customer Customer
 customer = GetCustomerById(customerId)
 DeleteCustomer(customer)
 var customers []Customer
 customers = GetCustomers()
 template_html.ExecuteTemplate(writer,"Home",customers)

}
// View - execute Template
func View(writer http.ResponseWriter, request *http.Request) {
 var customerId int
 var customerIdStr string
 customerIdStr = request.FormValue("id")
 fmt.Sscanf(customerIdStr, "%d", &customerId)
 var customer Customer
 customer = GetCustomerById(customerId)
 fmt.Println(customer)
 var customers []Customer
 customers= []Customer{customer}
 // customers.append(customer)
 template_html.ExecuteTemplate(writer,"View",customers)

}

Main method handles Home, Alter, Create,Update, View, Insert and Delete functions with
different aliases for lookup and rendering the templates appropriately. HttpServer listens to
the port 8000 and waits for template alias invocation.

// main method
func main() {
 log.Println("Server started on: http://localhost:8000")
 http.HandleFunc("/", Home)
 http.HandleFunc("/alter", Alter)
 http.HandleFunc("/create", Create)
 http.HandleFunc("/update", Update)
 http.HandleFunc("/view", View)
 http.HandleFunc("/insert", Insert)
 http.HandleFunc("/delete", Delete)

Getting Started with Go for Data Structures and Algorithms Chapter 1

[31]

 http.ListenAndServe(":8000", nil)
}

The header template has the html head and body defined in the code snippet below. The
title of the web page is set to CRM and the web page has Customer Management - CRM as
content.

Header.tmpl

{{ define "Header" }}
<!DOCTYPE html>
<html>
 <head>
 <title>CRM</title>
 <meta charset="UTF-8" />
 </head>
 <body>
 <h1>Customer Management- CRM</h1>
{{ end }}

The footer template has the html and body close tags defined. Footer template is presented
in the code snippet below:

Footer.tmpl

{{ define "Footer" }}
 </body>
 </html>
{{ end }}

The menu template has the links defined for Home and Create Customer as shown in the
code below:

Menu.tmpl

{{ define "Menu" }}
Home |Create Customer
{{ end }}

The Create template consists of Header, Menu and Footer templates. The form to create
customer fields is found in the create template. This form is submitted to a web path -
Insert, as show in the code snippet below:

Create.tmpl

{{ define "Create" }}
 {{ template "Header" }}

Getting Started with Go for Data Structures and Algorithms Chapter 1

[32]

 {{ template "Menu" }}

 <h1>Create Customer</h1>

 <form method="post" action="/insert">
 Customer Name: <input type="text" name="customername"
placeholder="customername" autofocus/>

 SSN: <input type="text" name="ssn" placeholder="ssn"/>

 <input type="submit" value="Create Customer"/>
 </form>
{{ template "Footer" }}
{{ end }}

The Update template consists of Header, Menu, and Footer templates, as shown below. The
form to update customer fields is found in the update template. This form is submitted to a
web path - Alter:

Update.tmpl

{{ define "Update" }}
 {{ template "Header" }}
 {{ template "Menu" }}

<h1>Update Customer</h1>

 <form method="post" action="/alter">
 <input type="hidden" name="id" value="{{ .CustomerId }}" />
 Customer Name: <input type="text" name="customername"
placeholder="customername" value="{{ .CustomerName }}" autofocus>

 SSN: <input type="text" name="ssn" value="{{ .SSN }}"
placeholder="ssn"/>

 <input type="submit" value="Update Customer"/>
 </form>
{{ template "Footer" }}
{{ end }}

The View template consists of Header, Menu, and Footer templates. The form to view
customer fields is found in the View template presented in the code below:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[33]

View.tmpl

{{ define "View" }}
 {{ template "Header" }}
 {{ template "Menu" }}

 <h1>View Customer</h1>

<table border="1">
<tr>
<td>CustomerId</td>
<td>CustomerName</td>
<td>SSN</td>
<td>Update</td>
<td>Delete</td>
</tr>
{{ if . }}
 {{ range . }}
<tr>
<td>{{ .CustomerId }}</td>
<td>{{ .CustomerName }}</td>
<td>{{ .SSN }}</td>
<td><a href="/delete?id={{.CustomerId}}" onclick="return confirm('Are you
sure you want to delete?');">Delete </td>
<td>Update </td>
</tr>
{{ end }}
 {{ end }}
</table>
{{ template "Footer" }}
{{ end }}

Run the following commands:

go run crmapp.go crm_database_operations.go

The screenshot of the output is attached below:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[34]

The web browser output will look as follows:

Getting Started with Go for Data Structures and Algorithms Chapter 1

[35]

Summary
This chapter introduced database operations and Web Forms. The reader will be able to
build the web applications which can store the data in databases. Arrays, Slices, two
dimensional slices and maps were covered with code samples. Array methods such as len,
iterating through array using for, and range were explained in this chapter using code
snippets. Two dimensional arrays and slice of slices were discussed in the slices section.

Maps are explained with various scenarios such as adding keys and values as well as
retrieving and deleting values. Maps of different types such as string and integer were also
discussed in this chapter. Furthermore, variadic functions, deferred function calls, and
panic and recover operations are demonstrated in the sections of database operations and
web forms.

Getting Started with Go for Data Structures and Algorithms Chapter 1

[36]

The CRM application was built as a web application with data persisted in the MySql
database. Database operations for adding, deleting, updating, and retrieving data are
shown in code snippets. In addition, WebForms for Creation, Updating, Deleting and
Viewing Customer Data is presented using webforms with templates. My sql driver and
installation details were provided in the technical requirements section in this chapter. How
to create a web application using go is demonstrated with execution details.

The next chapter will have the topics related to linear data structures such as Lists, Sets,
Tuples, and Stacks.

Q&A
What is the name of the method to get the size of an array?1.
How do you find the capacity of the slice?2.
How do you initialise the 2D slice of type string?3.
How do you add an element to the slice?4.
In the code, can you demonstrate how to create a map of key strings and value5.
strings? Initialize the map with keys and values in the code, iterate them in a
loop, and print the keys and values in the code.
 How do you delete a value in a map?6.
What are the parameters required for getting a database connection?7.
Which sql.Rows class method makes it possible to read the attributes of the entity8.
in a table?
What does defer do when a database connection is closed ?9.
Which method allows the sql.DB class to create a prepared statement?10.

Reference
To read more about Arrays, Maps and Slices, the following books are recommended:

1.Learning Go DataStructures & Algorithms [Video]

2. Mastering Go

https://www.packtpub.com/application-development/learning-go-data-structures-and-algorithms-video
https://www.safaribooksonline.com/library/view/mastering-go/9781788626545/

Index

	Table of Contents
	Getting Started with Go for Data Structures and Algorithms
	Technical Requirements
	Arrays
	Slices
	Two Dimensional Slices
	Maps
	Database Operations
	Variadic Functions

	CRUD Web Forms
	Defer and Panic

	Summary
	Q&A
	Reference

	Index

